Review: Average Rate of Change - 9/16/16

1 Even and Odd Functions

Definition 1.0.1 A function f is even if f(-x) = f(x). It is symmetric across the y axis. **Example 1.0.2** Let f(x) = |x|. f(-x) = |-x| = |x| = f(x), so f is even.

Definition 1.0.3 A function f is odd if f(-x) = -f(x). It is symmetric about the origin.

Example 1.0.4 Let $f(x) = \frac{x}{x^2-1}$. $f(-x) = \frac{-x}{(-x)^2-1} = -\frac{x}{x^2-1} = -f(x)$, so f is odd.

Practice Problems

Are the following functions even, odd, or neither?

- 1. $f(x) = x^4 + x^2 2$.
- 2. $g(x) = x^3 x$.
- 3. $h(x) = x^5 5$.

2 Average Rate of Change

Definition 2.0.5 A secant line is a line that connects two points on a curve. Calculating the slope of the secant line gives us the average rate of change.

If we are looking at a graph of distance vs. time, then the average rate of change can be interpreted as the average velocity:

average velocity = $\frac{\text{change in position}}{\text{change in time}}$.

Example 2.0.6 The Dartmouth Coach runs from Hanover to Boston Logan airport, and it stops on the way in Lebanon, New London, and South Station. Below is a time table of the Dartmouth Coach schedule.

Location	Time Elapsed	Distance Traveled
Hanover	0 hours	0 miles
Lebanon	1/3 hours	5 miles
New London	5/6 hours	30 miles
South Station	17/6 hours	130 miles
Logan Airport	3 hours	134 miles

What is the average velocity of the coach between New London and South Station?

average velocity =
$$\frac{130 - 30 \text{ miles}}{\frac{17}{6} - \frac{5}{6} \text{ hours}}$$
$$= \frac{100 \text{ miles}}{2 \text{ hours}}$$
$$= 50 \text{ mph}$$

Practice Problems

A rock is thrown on Mars. It's height in feet after t seconds is given by $y = 10t - 1.86t^2$. Find the average velocity over each of the time intervals:

- 1. [1, 2]
- 2. [1, 1.5]
- 3. [1, 1.1]

3 Library of Functions

3.1 Constant and Linear Functions

Definition 3.1.1 A constant function is of the form f(x) = a for some constant a.

Example 3.1.2 f(x) = 5 is a constant function.

Definition 3.1.3 A linear function is a line. It is of the form f(x) = mx + b where m is the slope and b is the y intercept.

Example 3.1.4 f(x) = -x + 3 is a linear function.

3.2 Power Functions

Definition 3.2.1 A power function looks like $f(x) = x^a$ for some constant a.

Example 3.2.2 $f(x) = x^3$ is a power function. $g(x) = x^{-3/4}$ is a power function. $h(x) = x^2 + 7$ is NOT a power function.

3.3 Polynomial Functions

Definition 3.3.1 A polynomial function looks like $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where n is a nonnegative integer and a_i are real numbers. If $n \neq 0$, then the **degree** of the P is n.

Example 3.3.2 $f(x) = x^2 + 4x - 3$ is a polynomial function of degree 2. $g(x) = \pi x^3 + \sqrt{7}$ is a polynomial function of degree 3. Here $a_3 = \pi$, $a_2 = a_1 = 0$, and $a_0 = \sqrt{7}$. $h(x) = x^{3/2}$ is NOT a polynomial function because 3/2 is not an integer. $k(x) = x^{-2}$ is NOT a polynomial function because -2 is negative.

3.4 Rational Functions

Definition 3.4.1 A rational function is the quotient of two polynomials:

$$R(x) = \frac{P(x)}{Q(x)}$$

where P and Q are both polynomials.

Example 3.4.2 $f(x) = \frac{x^2+3}{x^3+x}$ is a rational function. $g(x) = \frac{x-5}{\sqrt{x+7}}$ is NOT a rational function because the denominator is not a polynomial.

3.5 Algebraic Function

Definition 3.5.1 An algebraic function is a sequence of operations (addition, subtraction, multiplication, division, or taking roots) performed on a polynomial.

Example 3.5.2 $f(x) = \sqrt{x^2 - 5} \cdot \frac{x^3 + 7}{x^5 - \sqrt{x - \pi}}$ is an algebraic function. $g(x) = \sqrt[4]{x^2 - 25}$ is an algebraic function. $h(x) = \sin(x)$ is NOT an algebraic function.

3.6 Floor and Ceiling Functions

Definition 3.6.1 A floor function rounds the value of the function down to the nearest integer. The notation for a floor function looks like this: $f(x) = \lfloor x \rfloor$. A ceiling function rounds the value of the function up to the nearest integer. The notation for a ceiling function looks like this: $f(x) = \lfloor x \rfloor$.